Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа

Современная педагогика » Методика преподавания темы "Тригонометрические функции" в курсе алгебры и начал анализа » Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа

Страница 2

Больше всего проблем, связанных с неоднозначностью соответствия между точками и числами на окружности возникает при решении задач вида: «Найти на числовой окружности точки с ординатой (абсциссой) большей Ö3/2 и записать, каким числам они соответствуют».

Такие неравенства, характеризующие дугу, рекомендуется на начальном этапе составлять в два шага. На первом шаге составить так называемое «ядро» аналитической записи p/3 < t < 2p/3, и только на втором составить общую запись p/3+2pk < t < 2p/3+2pk, где к Î Z.

По этому поводу осмелюсь не согласиться с статьей [10], в который автор пишет, что уточнение «где к Î Z» можно опускать, записывая его только в парадных случаях – на контрольных или экзаменационных работах. В большинстве случаев это действительно можно делать совершенно безболезненно, но как быть, если при отборе корней уравнения или неравенства, или при наложении определенных ограничений на функцию, параметр к сможет принимать не все а, например, только положительные или только четные значения?

Учащиеся, привыкшие писать +2pk, не задумываясь над тем, какие значения может принимать параметр к, и в этом случае напишут +2pk, что автоматически сделает их решение неверным.

Это приведет и к недопониманию того факта, что, например, множества «4pk, где к Î Z» и «2pk, где к Î 2Z» совпадают. Это, в свою очередь, может породить затруднения при рассмотрении функций с периодом, равным 4p. А ведь таким функциям уделяется немало времени при изучении темы «Тригонометрические функции».

Таким образом, нельзя оставлять недоработанными никакие, даже самые маленькие детали, ведь незначительные с виду недоработки, возникающие при изучении числовой окружности, в процессе изучения самих тригонометрических функций могут стать причиной возникновения больших пробелов в знаниях.

Теперь, когда мы научились работать с числовой окружностью как самостоятельным объектом, можно приступать к введению самих тригонометрических функций.

Не стоит забывать, что определения тригонометрических функций с помощью числовой окружности плохо укладываются в сознании ребят по одной простой причине: на первом этапе определения были даны в геометрической трактовке – как отношения сторон прямоугольного треугольника.

Из психологии известно: «если какое-нибудь важное понятие вводится в первый раз, то ассоциации, сопутствующие ему, врезаются в сознание учащегося чрезвычайно прочно. Последующие впечатления бывают слабее и не могут стереть того обличия, в котором это понятие явилось впервые». [5]

Несмотря на то, что мы уже использовали окружность для введения «новых» определений синуса и косинуса на этапе расширения множества значений, принимаемых углом необходимо еще раз провести взаимосвязь между прямоугольным треугольником и числовой окружностью.

Напомним, что в школьных учебниках этому факту почему-то не уделяется должного внимания (см. главу «Анализ изложения темы «Тригонометрические функции» в различных школьных учебниках»), поэтому учителю стоит обратить внимание на то, чтобы при введении тригонометрических функций на этом этапе были озвучены следующие моменты.

Рассмотрим числовую окружность единичного радиуса, расположенную в прямоугольно декартовых координатах. Рис.1

В положительном направлении от оси ОХ отложим угол a такой, что 0 < a < 900. Обозначим полученную на окружности точку как Рa. Опустим из точки Рa перпендикуляр на ось ОХ, получим точку М. Рассмотрим получившийся прямоугольный треугольник ОМРa. Sina по определению равен отношению МРa/ОРa, но радиус окружности ОРa равен единице, следовательно, Sina = МРa. Аналогичным образом, cosa = ОМ. Заметим, что длина ОМ - это абсцисса точки Рa в прямоугольно-декартовой системе координат, а длина МРa - ее ордината. Таким образом, синус и косинус угла a определяются через ординату и абсциссу точки Рa, что является более удобным при работе в прямоугольно-декартовой системе координат.

Работая с числовой окружностью, мы уже усвоили тот факт, что так как длина дуги единичной окружности легко выражается через центральный угол, на нее опирающийся, то точку Рa, можно построить и другим способом - откладывая дугу заданной длины. А так как длина дуги – всегда действительное число, значит, от тригонометрических функций углового аргумента легко можно перейти к тригонометрическим функциям числового аргумента.

Сейчас вернемся к наложенным на угол a ограничениям. Угол a принадлежит промежутку от 00 до 900, а значит и длина дуги лежит между нулем и p/2. Используя все ту же геометрическую интерпретацию, легко показать, что эти определения можно распространить и на любые углы и числа.

Понятия тангенса и котангенса можно вводить двояко: как отношение синуса к косинусу (косинуса к синусу) и как ординату (абсциссу) точки пересечения касательной к окружности в точке (1;0) ((0;1)) и прямой ОРa.

Рис.2

Страницы: 1 2 3 4 5 6 7


Тонкости педагогики:

Методика исследования уровня речевого недоразвития
Для обследования детей с моторной алалией мы использовали традиционную методику логопедического обследования. При составлении данной методики использовались принципы анализа речевой патологии, сформулированные Р.Е.Левиной, методы обследования нарушений речи, предложенные Л.Ф.Спировой, Г.В.Чиркиной. ...

Принципы обучения
Дидактические принципы – основные положения, которые лежат в основе содержания, организации и методов учебного процесса. Современная педагогическая наука в качестве основополагающих принципов выделяет: принцип сознательности и активности обучаемых, суть которого состоит в том, что подлинную сущност ...

Организация инновационной деятельности педагогического коллектива
Несмотря на довольно подробное описание в литературе различных аспектов инновационной деятельности, практически нигде не встречается технологического описания тех или иных этапов инновационного процесса. Существующая практика показывает, что каждый здесь идет своим путем, путем проб и ошибок, ориен ...

Разделы сайта

Copyright © 2025 - All Rights Reserved - www.eduinterest.ru