Дети уже на предшествующем этапе усвоили, что предметы могут изменяться по длине, ширине, высоте, толщине. Но важно, чтобы дети не только определяли эти изменения на готовом материале, но и сами производили их. Например, им предлагается нарисовать или Бырезать два-три прямоугольника одинаковой длины, но разной ширины; нарисовать две морковки: одну – длиннее, а другую – короче; вырезать из бумаги квадраты: один – большой, а другой – маленький.
Приобретенные детьми знания о различных параметрах протяженности должны правильно отражаться в речи: «Нитка белая толще черной нитки» или «Мне нужна длинная нитка для нанизывания бус» (а не большая, как часто говорят дети). Нужно также, чтобы эти знания дети использовали в различных видах деятельности: в рисовании, лепке, аппликации, в играх и т.д. Например, для игры «в поезд» дети рисуют на площадке железнодорожный путь, обозначают станции, находящиеся на разном расстоянии от Ленинграда (по одну сторону от него): одна – ближе, другая – дальше. Дети могут и более точно определить эти расстояния, например станция Удельная – ближе к Ленинграду, и дети отсчитывают четыре шага, а станция Левашово – дальше, и дети отсчитывают от начала пути шесть шагов. «А на сколько дальше до станции Левашово?», – ставит вопрос воспитательница. И считая расстояние между станциями Удельной и Левашово шагами, дети говорят, что Левашово дальше на два шага. Так шаг становится мерой измерения в игре детей.
Другой пример. Соревнуясь в бросании мяча в цель или в метании мешочков на расстояние, дети хотят узнать, кто из них бросает дальше и на сколько. Это можно определить на глаз или более точно, подсчитав количество шагов от исходной линии до места падения мешочка. Таким образом возникает жизненная потребность в практическом измерении расстояния.
У детей старшей группы необходимо сформировать четкие представления об отношениях по величине между предметами, которые отражаются в словах, указывающих место предмета в ряду других: длинный, короче, еще короче, самый короткий. Уже в средней группе дети были подведены к распознаванию отношений между двумя-тремя предметами. В старшей группе дети должны освоить отношения между пятью – десятью предметами, которые образуют ряд возрастающих и убывающих величин, т.е. овладеть «сериацией». Усвоение этих отношений является относительно сложной задачей, связанной с развитием у детей аналитического восприятия предмета (выделение длины, ширины, высоты) и умением соизмерять предметы путем сопоставления их по данным параметрам. Большую роль в этом играет развитие глазомера.
В целях проверки знаний, усвоенных в средней группе, можно предложить детям подобрать ленту в соответствии с образцом, величину которого следует запомнить. Материалом могут служить два набора по пять парных лент одинаковой ширины, но разного цвета и разной длины (от 12 до 20 см), при этом в каждой паре одинаковой длины цвет лент может быть разным. Задача состоит в том, чтобы абстрагировать в предъявленном образце лишь одну длину и в соответствии с ней найти парную ленту. Выполненное задание должно быть проверено самим ребенком. «Как доказать, что твоя красная лента одинаковой длины с моей синей?» Ребенок сначала указывает приемы проверки, потом доказывает это практически.
Другой вариант занятия. Всем детям раздаются по пять разноцветных полосок одинаковой ширины, но разной длины (с разницей в 2 см). Предлагается разложить их по порядку (рис. 15), но кто как хочет (в возрастающей или убывающей последовательности). Затем дети объясняют: «У меня самая длинная полоска – красная, покороче – розовая, еще покороче – синяя, еще короче – голубая и самая короткая – зеленая». Другой ребенок называет цвет и размер своих полосок, расположенных в возрастающем порядке. Это упражнение способствует уточнению восприятия размера и цвета и совершенствованию речи детей.
Тонкости педагогики:
Эффекты коллективного мышления
Отметим эффекты, по которым можно заметить, что индивидуальные мыслительные акты и действия участников развиваются, «собираются» до культурного феномена коллективного мышления. Во-первых, можно заметить, что участники (не только ведущие процесса) удерживают целостность обсуждения, строят высказыван ...
Первый опыт обучения младших школьников с компьютерной поддержкой. Обзор
программ
Какие же цели должен ставить пропедевтический курс информатики? Мы считаем, что основной целью должно стать формирование «информационного» стиля мышления, который по образному выражению Ю.А. Шафрина должен сочетать аналитическое мышление математика, логическое мышление следователя, конкретное мышле ...
Компьютер в жизни младшего школьника. Результаты констатирующего этапаэксперимента
Мышление младшего школьника отличается от мышления дошкольника Во-первых, более высокими темпами развития, во-вторых, существенными структурными и качественными преобразованиями, происходящими в самих интеллектуальных процессах. В младшем школьном возрасте под влиянием учения как ведущей деятел ...